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SUMMARY

This paper describes a domain decomposition method for the incompressible Navier–Stokes equations in
general co-ordinates. Domain decomposition techniques are needed for solving flow problems in
complicated geometries while retaining structured grids on each of the subdomains. This is the so-called
block-structured approach. It enables the use of fast vectorized iterative methods on the subdomains. The
Navier–Stokes equations are discretized on a staggered grid using finite volumes. The pressure-correction
technique is used to solve the momentum equations together with incompressibility conditions. Schwarz
domain decomposition is used to solve the momentum and pressure equations on the composite domain.
Convergence of domain decomposition is accelerated by a GMRES Krylov subspace method. Computa-
tions are presented for a variety of flows. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, much progress has been made in the application of computational fluid
dynamics to engineering problems. Several approaches have been proposed for the discretiza-
tion of the incompressible Navier–Stokes equations in arbitrarily shaped domains with a finite
difference or finite volume method. We adopt a boundary conforming finite volume method.
Methods mainly differ in grid arrangement (staggered or collocated grids), and in the choice
of unknowns. Pioneering papers for the collocated grid approach are [1–3]; an interesting
paper on the staggered grid approach is [4]. The various possible grid layouts and choice of
primary dependent variables are reviewed in [5]. We have chosen for the staggered grid
arrangement because spurious pressure oscillations are absent and artificial pressure boundary
conditions are not required.
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Discretization in general co-ordinates on a staggered grid is a far from trivial matter. Several
special precautions must be taken to ensure accuracy on non-smooth grids, see e.g. [6]. A
central discretization is used for the discretization of the convective terms. References [7–14]
describe the discretization in detail and [15] discusses the ability of the method to accurately
solve a number of benchmark problems. Prior to the discretization of the incompressible
Navier–Stokes equations, the flow domain is mapped onto a rectangular domain, generating
boundary conforming co-ordinates, see Figure 1.

The motivation behind the boundary conforming approach is that the resulting computa-
tional grid is rectangular and structured, and that accurate discretization of boundary
conditions is easy. The rectangular structured computational grid simplifies programming,
because, for instance, the structure of matrices that arise in the computation is known
beforehand. This property enables us to write efficient iterative solvers for these equations. The
latter requires more work for, for instance, finite element discretizations on unstructured
meshes.

It can be easily seen that the boundary conforming method cannot handle complex
geometries, because a sufficiently smooth mapping may not exist. Therefore, we use the
so-called block-structured approach, in which the global flow domain is decomposed into
subdomains, each of which can be easily mapped onto a rectangle (see Figure 2). Of course,
the subdomain equation systems are not independent of each other and we need to couple the
solutions in the subdomains. The resulting method is called a domain decomposition method.

In a previous model study for the advection–diffusion equation [16,17] Chapter 3, we have
investigated several coupling conditions and their effect on convergence of the domain
decomposition algorithm. We also considered the effect of Krylov subspace acceleration on
convergence. It turned out that, compared with Schwarz-type coupling conditions, improve-
ments in convergence with variations of Neumann–Dirichlet- and Robin-type coupling
conditions for the unaccelerated algorithm are possible. But these improvements are not sig-
nificant when Krylov subspace acceleration is applied. Therefore, we shall use the accelerated

Figure 1. Transformation of the flow region to a rectangle in computational space.
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Figure 2. Flow around two islands. It is virtually impossible to map this domain onto a rectangle. Three
subdomains are used here.

Schwarz [18,19] domain decomposition algorithm. Related work on the subject of influencing
convergence behavior by varying the coupling conditions can be found in [20–22].

There is a vast amount of literature on the subject of domain decomposition for solving
partial differential equations. Here we mention only those publications that bear directly on
the type of flow computations that we envisage here. In [23], a multi-grid is extended to
composite grids with an arbitrary overlap. The pressure-correction method is used for solving
the incompressible Navier–Stokes equations on staggered grids. An explicit time integration
scheme is used, so that only a domain decomposition problem for the pressure equation
remains. In [24], a multi-grid method is used to solve the Poisson equation on arbitrary
overlapping composite grids, and good convergence results are obtained. A complete com-
posite multi-grid (CCMG) method is used where information is transferred between subdo-
mains at each grid level. In [25], the procedures described in [23,24] are extended by
considering Neumann–Dirichlet coupling conditions instead of the basic Schwarz iteration.

In [26,27], the domain decomposition method consists of solving both velocity and pressure
on each subdomain simultaneously. This causes a difficulty with pressure levels in the
subdomains, which must be matched after the computation since they are only determined up
to a constant. Since both the momentum and pressure equations are solved in each domain
decomposition iteration, the method may be quite expensive. Both papers employ a constant
overlap in physical space, thus ensuring good convergence properties as the mesh size is
refined.

A more efficient approach is to solve the momentum and pressure equations separately on
the composite domain. This was demonstrated in [28–30]. In [28,29], an explicit time
integration was used like in [23], but with an extension to arbitrary overlapping grids, thus
releasing the requirement of having coincident grid points at the inter-grid boundaries. In
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contrast to Reference [24], References [28–30] employ an incomplete composite multi-grid
(ICMG) method where information is transferred between subdomains only at the finest grid
level. The reason is that ICMG is much easier to implement than CCMG and also appears to
be efficient. In their ICMG method, information is transferred after each V-cycle.

The solution method of [28,29] consists of an explicit solution of the momentum equations,
followed by an iterative solution of the pressure equations by using a Schwarz-type method. In
the latter case, special care must be taken to obtain well-posed subdomain problems. For this
purpose, the subdomains are solved with Neumann boundary conditions, in combination with
a mass imbalance correction (MIC) scheme, see [31,32]. In [30] the authors use an improved
discretization developed in [5] and use a semi-implicit time integration instead of the fully
explicit one used in [28,29]. The latter also makes Schwarz iteration for the momentum
equations necessary. More details about the methods of [28–30] will be given later when more
detailed comparisons with our method are made.

In [33], a non-linear multi-grid scheme is used that employs a pressure-correction method of
SIMPLE-type as a smoother on the different levels for convergence acceleration. The u time
integration method is used in combination with a second-order finite volume space discretiza-
tion using cell-centered collocated block-structured grids. The systems of equations for the
velocities M16=b1, pressure-correction M2DP=b2, and temperature M3T=b3. are solved
using a Richardson iteration with a blocked-ILU preconditioner. This works as follows. The
partitioning of the global solution domain into blocks implies a partitioning of the matrices
M1, M2 and M3 into blocks. The blocked-ILU preconditioner is now a matrix with the same
block structure as Mi but with the diagonal blocks replaced by ILU preconditioners of the
diagonal blocks of Mi and the off-diagonal blocks set to zero. In other words. it is like a
block-Jacobi preconditioned Richardson iteration with inaccurate subdomain solution using a
few ILU iterations.

As opposed to [26,27,33], we solve the momentum and pressure equations separately over
the composite domain, instead of solving these equations simultaneously in the subdomains.
As opposed to [23–25,28–30,33], we do not use a multi-grid method, but solve the subdomains
accurately using the GMRES method, see [34,35]. Also, we use a fully implicit time integration
that is in contrast to [23–25,28,29], where an explicit time integration was used, and to [30]
where a semi-implicit time integration was used.

Another important difference between our method and those of [26–30] is that we use a
minimal overlap instead of an arbitrary overlap. With minimal overlap, it is meant here that
the overlap area approaches zero as the mesh is refined. The reason for choosing minimal
overlap is that it avoids the increasing duplication of work in overlap areas as the mesh is
refined. Having minimal overlap also simplifies implementation. Recent experiences [36–38]
have shown that although a large overlap generally gives better convergence rates, minimal
overlap typically leads to lower computing times, even for large and ill-conditioned problems.
Having minimal overlap is also the prevalent approach in engineering codes due to its
convenience.

Section 2 presents the Navier–Stokes solution procedure. After that, Sections 3 and 4
describe the domain decomposition algorithm and its Krylov subspace acceleration. Section 5
gives some results for some complex geometries, like the backward-facing step problem,
skewed cavity problem, and the problem of flow around a cylinder in a wall-bounded shear
flow. Finally, Section 6 presents our conclusions.
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2. NAVIER–STOKES SOLUTION PROCEDURE

The flow solver described in [8,12,14,39] is used as a basis for domain decomposition. A
staggered grid is used in boundary-fitted co-ordinates. The discretization is co-ordinate
invariant. The unknowns are the pressure (in cell centers), and the contravariant mass flux
components (in the centers of cell-faces). For details, see the above-mentioned references.

Space discretization in general co-ordinates results in a system of differential algebraic
equations that may be summarized as:

!RV: M= f(VM, VB)−GMpM,
DMVM+DBVB=0.

(1)

The matrix R is a diagonal matrix with values of the density on the diagonal. VM represents
all non-prescribed contravariant mass flux components, and VB contains velocity components
that are prescribed at the external boundaries:

VB=g(t). (2)

The vector pM represents all non-prescribed pressure unknowns, f represents the viscous stress
as well as the convective terms and the volume forces. The matrix GM represents the
discretization of the gradient operator. The operator D= (DM, DB) represents the discrete
approximation of the divergence operator. Figure 3 presents the various stencils that arise in
the space discretization in computational space.

The u method is used for time discretization of (1), leading to:

R
VM

n+1−VM
n

Dt
=uf(VM

n+1, VB
n+1)+ (1−u)f(VM

n , VB
n )−uGMpM

n+1− (1−u)GMpM
n , (3.a)

VB
n+1=gn+1, (3.b)

DMVM
n+1+DBVB

n+1=0. (3.c)

Figure 3. Discretization stencils for the divergence D, V1 component of stress and convection f, and V1

component of gradient G operators.
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With the pressure-correction method [40–42], (3.a) and (3.b) are replaced by:

R
VM* −VM

n

Dt
=uf(VM* , VB

n+1)+ (1−u)f(VM
n , VB

n )−GMpM
n , (4.a)

VB* =gn+1. (4.b)

The non-linear term f(VM* , VB
n+1) is linearized, leading to:

f(VM* , VB
n+1)$M(VM

n )VM* , (5)

with M a linear operator. The resulting system for VM* is solved in two steps. Substitution of
(5) into (4.a) and the introduction of VM* *=uVM* + (1−u)VM

n gives

S(VM
n )VM* *=

R
uDt

VM
n −GMpM

n , (6)

with the momentum matrix

S(VM
n )=

R
uDt

−M(VM
n ). (7)

The solution VM* is obtained by

VM* =
1
u

(VM* *− (1−u)VM
n ). (8)

Subtracting (4.a) from (3.a) gives:

R
VM

n+1−VM*
Dt

=u{ f(VM
n+1, VB

n+1)− f(VM* , VB
n+1)}−uGM(pM

n+1−pM
n ). (9)

In [42] it is shown that the first term on the right-hand-side may be neglected without affecting
the order of accuracy. Hence, (9) is replaced by

VM
n+1−VM*

Dt
= −uR−1GM(pM

N+1−pM
n ). (10)

Applying the discrete divergence operator DM to (10) gives the pressure equations

−uDMR−1GM(pM
n+1−pM

n )=
DMVM

n+1−DMVM*
Dt

. (11)

Because of the divergence freedom (3.c) we may also write this as
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−uDMR−1GM(pM
n+1−pM

n )=
DMVM

n+1−DMVM*
Dt

. (12)

The boundary conditions for the normal velocity components are already substituted in V* so
that VB*/VB

n+1 and (12) simplifies to

DMR−1GMDp=
DV*
uDt

, (13)

with Dp=pM
n+1−pM

n . After the solution of (13), we set pM
n+1=pM

n +Dp, and VM
n+1 is obtained

from (10).
In summary, the pressure-correction method consists of three consecutive steps:

� Step 1: Solution of VM* from (6) and (8).
� Step 2: Solution of Dp from (13). Equation (13) is a linear ‘Poisson-like’ system of

equations.
� Step 3: Computation of pM

n+1=pM
n +Dp and computation of VM

n+1 from (10). This is an
explicit matrix–vector operation, and guarantees divergence freedom of the velocity field.

3. DOMAIN DECOMPOSITION

The aim of the domain decomposition algorithm is to enforce the local conservation laws
(mass conservation, momentum continuity) on the global domain, by applying the discretized
equations across subdomain boundaries. For this reason, the pressure-correction algorithm of
the previous section is applied to the global domain. Because of this, the conservation laws
automatically hold across block interfaces after convergence. This is in contrast to [26,27],
where specific measures had to be taken to ensure conservation and to obtain a continuous
pressure field across block interfaces. Domain decomposition is used inside the pressure-
correction method instead of 6ice 6ersa as in [26,27]. At present, the grids must match at the
subdomain boundaries. In the future, this restriction may have to be lifted to increase the
flexibility in grid generation. Note that the domain decomposition itself is allowed to be
unstructured, so that the number of subdomains that share a corner point is not restricted (see
Figure 4).

Figure 4. An overlapping decomposition of the domain.
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3.1. Algebraic Schwarz iteration for the discretized Na6ier–Stokes equations

For the description of domain decomposition we start from the discretized equations on the
global domain. Equation (6) represents the linearized momentum equations and Equation (13)
represents the pressure equations on the global domain. It is not necessary to form these global
discretization matrices in an implementation. It is sufficient to discretize the equations per
subdomain. Equations (6) and (13) are solved using domain decomposition. The last step of
the pressure-correction algorithm (10) is carried out in all subdomains independently. For the
sake of argument, consider a situation of two blocks, as in Figure 5.

Both the pressure equations (13) and the momentum equations (6) are of the form

Au= f, (14)

with either A=S from (7) and u=V** for the momentum equations or A=DMR−1GM from
(13) and u=Dp for the pressure equations. If we decompose A into blocks such that each
block corresponds to all unknowns in a single subdomain, with a small modification for the
momentum equations (see further on), then

A=
�A11

A21

A12

A22

n
, (15)

where A11 and A22 represent the subdomain discretization matrices and A12 and A21 represent
the coupling between subdomains. The unaccelerated domain decomposition iteration for (14)
is of the following form

um+1= (I−N−1A)um+N−1f, (16)

where N denotes a block Gauss–Seidel or block Jacobi preconditioner, so that

N=Ngs=
�A11

A21

¥
A22

n
or N=Njac=

�A11

¥
¥

A22

n
. (17)

Since the normal mass flux components at the block interfaces belong to two subdomains,
the momentum matrix S (7) is augmented before application of (16). Consider the decomposi-
tion into two blocks as in Figure 5. Suppose that the mass fluxes unknowns are divided into
three sets as in Figure 5.

� I0 1=Inr@Ir consists of mass fluxes belonging to block 1 excluding the normal mass fluxes
at the block interfaces.

� I0 2=II consists of the normal mass fluxes at the interface.
� I0 3=IIIr@IIInr consists of the mass fluxes belonging to block 2 excluding the normal mass

fluxes at the block interfaces.

With respect to these three sets of unknowns, the matrix S (7) has the block form:
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Figure 5. Different sets of unknowns. Inr and Ir constitute set I and IIInr and IIIr constitutes set III. The
index set I1=Inr@Ir@II constitutes domain V1 and I2=II@IIIr@IIInr constitutes V2.

S=Ã
Æ

È

S11

S21

S31

S12

S22

S32

S13

S23

S33

Ã
Ç

É
, with V**=Ã

Æ

È

V1**
V2**
V3**

Ã
Ç

É
. (18)

The system of equations SV**= f can be transformed to the equivalent system

S( V( **=Ã
Ã

Ã

Æ

È

S11

S21

S21

S31

S12

S22

0
0

0
0

S22

S32

S13

S23

S23

S33

Ã
Ã

Ã

Ç

É

·Ã
Ã

Ã

Æ

È

V( 1**
V( 2**
V( %**2

V( 3**

Ã
Ã

Ã

Ç

É

=Ã
Ã

Ã

Æ

È

f1

f2

f2

f3

Ã
Ã

Ã

Ç

É

. (19)

The solution of (19) always satisfies V( 2**=V( %**2 if S22 is invertible (see [21]) and therefore, the
system (19) is equivalent to the original system of equations SV**= f. With

A11=
�S11

S21

S12

S22

n
, A22=

�S22

S32

S23

S33

n
, (20)

we obtain a system of the form (15).
The algebraic Schwarz domain decomposition algorithm [18,19] is a generalization of block

Gauss–Seidel and Jacobi iterations for overlapping blocks of the matrix. Block Gauss–Seidel
and Jacobi iterations are similar to Schwarz domain decomposition, in the sense that in each
iteration, subdomain problems are solved using values of u from neighboring blocks. For
instance, formula (16) interpreted for domain 1 becomes
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u1
m+1=A11

−1( f−A12u2
m), (21)

where A11
−1 represents subdomain solution and u2

m are the values from the neighboring block.
The subdomain problems, A11u1= . . . and A22u2= . . . are solved accurately using an
iterative method. We use GMRES [34] with appropriate preconditioners [35,43] to solve the
subdomain problems—the so-called inner iteration (16). A GMRES method is also used later
on in Section 4 to accelerate domain decomposition—the so-called outer iteration. In effect,
the iterative methods used for the inner and outer iterations can be replaced by other methods
independent of each other.

Note that the normal mass fluxes at the block interface in region II are a part of the inner
regions of the subdomains, and are solved for in each iteration.

This concludes the description of the solution of (6) and (13) using domain decomposition.
Prior to the solution of (13), some precautions are necessary. A well-known problem with the
pressure-correction method is that in the case of given normal inflow velocity components at
all boundaries, the pressure matrix A=DMR−1GM from (13) is singular. For this reason, the
right-hand-side of the pressure equation must satisfy a compatibility constraint. In such a case,
we have3:

[1 1 ··· 1]A=0, (22)

which leads to the following compatibility constraint for the right-hand-side:

[1 1 ··· 1]
1

uDt
DVn+1= [1 1 ··· 1]ADp=0. (23)

This compatibility constraint is easily rewritten as:

%
all grid cells (i, j)

Di, jVn+1=0, (24)

with Di,j the divergence operator in grid cell (i, j ), see Figure 3. Requirement (24) is
automatically satisfied in a single domain case if the boundary conditions are compatible with
the incompressibility condition. However, in a general multi-domain case, the normal mass
fluxes at the block interfaces belong to two different blocks in our augmented system, and are
still slightly different after convergence of the domain decomposition algorithm for the mass
fluxes V**. It can be seen that (24) requires that

%
all normal mass fluxes

on the interface

VN, left
n+1 = %

all normal mass fluxes
on the interface

VN, right
n+1 , (25)

3 Only with special scaling of the equations are the elements of the row vector all unity.
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which is not satisfied accurately. It has been observed in practice that even a slight difference
in the values of the normal mass fluxes can lead to serious problems when solving the pressure
equation. Therefore, we have introduced an intermediate step in the algorithm that ensures
equal normal mass fluxes simply by copying their values of one block to the other.

Application of (25) does not affect the solution accuracy since the magnitude of the
correction is smaller than the solution accuracy with which the domain decomposition problem
for the momentum equations was solved.

The above discussion can be extended to the general multi-domain case, see also Section 3.2.
Also, extensions to irregular intersections are possible, see, for example, [24,27,44].

The correction prescribed by formula (25) has a similar function as that of the mass
imbalance correction (MIC) [31,32] scheme as used in [28–30], namely to obtain well-posed
problems for the pressure equations. The function of our correction scheme (25) is to ensure
that no mass is lost at the interfaces. The mass is not conserved on the subdomains by (25).
Note that this is also not required, since the solution V* obtained from (8) and (6) also does
not need to satisfy divergence freedom. Application of (25) ensures that the global pressure
equations (i.e. on the composite domain) are well-posed.

The global pressure equations are solved using Schwarz domain decomposition iteration. In
each Schwarz iteration for the pressure, the subdomain problems are solved using values of Dp
from the neighboring subdomain; in other words, using Dirichlet-type boundary conditions.
This means that the subdomain pressure equations are automatically well-posed, and no
compatibility conditions for the subdomain problems apply.

In [33], no correction for mass imbalance is needed because the unknowns velocity, pressure
and temperature reside at the cell-centers, so that different blocks do not have unknowns at the
block interfaces in common.

The method of [28–30] is somewhat different. In these, the authors solve subdomain
problems that resemble well-posed Navier–Stokes problems where the normal velocity is
prescribed everywhere on the interface and external boundary. The most natural choice is then
to use Neumann boundary conditions (see [28]). This, as explained above, requires that the
compatibility condition (24) is satisfied for the subdomains. To satisfy (24), the authors correct
the boundary mass fluxes using the MIC scheme. As they observe, the applied corrections are
relatively small (less than 1%, see [29]). Because their method focuses on subdomain mass
conservation, it will not preserve mass at the block interfaces up to machine precision.

The boundary mass fluxes needed to solve a pressure subdomain problem in [28–30] are
obtained by computing

(VM
n+1)boundary= (V*M,i−uDtR−1GM(pM

n+1,i−pM
n ))interpolated, (26)

where i denotes the iteration index. In other words, by carrying out the correction (10) of V*
in each pressure Schwarz iteration and interpolating this to the interface. This procedure thus
mixes pressure-correction with Schwarz—or Navier–Stokes solution methods with linear
algebra—and may therefore be difficult to implement. During iteration of the pressure, the
velocity field must be continuously updated.

In our method, momentum and pressure equations are treated separately, with an interme-
diate correction by (25) between the solution of these two systems. Formula (25) ensures that
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no mass is lost at the block interfaces and the pressure-correction method itself ensures local
mass conservation. The scheme used in [28–30] only ensures mass conservation on the
subdomains (not at the block interfaces) and can probably only be applied in those cases where
the velocity is prescribed at all external boundaries. It is not clear how their method can be
applied to cases where, on some parts of the boundary, the normal velocity component is not
imposed. The correction (25), on the other hand, can always be applied.

3.2. Extension to the general multi-domain case

The explanation of the domain decomposition algorithm was restricted to a two-block
situation and started from an (imaginary) discretization on the global domain. However, in our
implementation we cannot form this imaginary matrix. For instance, a problem occurs when
less than four or more than four blocks intersect at the same point, see Figure 6. We wish to
allow this to happen.

An accurate discretization in such difficult points would require an immense administration
in the program and probably also large rewrites of our code (in finite element fashion). This
is not desirable and simple solutions to this problem are wanted.

To avoid this problem, the domain decomposition algorithm communicates with neighbor-
ing blocks only through the common subdomain interface and not through the corners. The
consequence of this is that we must do something special at corner points. Consider as an
example the bottom-right subdomain of Figure 6. The discretization at the top-left corner
point extends across the subdomain boundaries, and we see that the stencil requires an
unknown in the corner of the domain (marked *), see Figure 7.

In the multi-block configuration of Figure 6, these unknowns do not correspond to an
actual unknown from a neighboring block. This problem is solved by eliminating the

Figure 6. Three blocks intersecting in the same point.
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Figure 7. Discretization at a corner point. (a) Momentum and pressure-1 component, (b) momentum and
pressure-2 component. The asterisks indicate unknowns to be eliminated.

corresponding unknowns in blocks with which we want to avoid communication by bilinear
extrapolation from the four mass fluxes within the domain under consideration. Pressures are
eliminated by linear extrapolation from the other two pressures along the domain boundary
with which we do allow communication.

The reason that this extrapolation procedure works is that the discretization stencils at only
a few points are disturbed. These local disturbances have a global effect due to the viscous
terms, but the resulting disturbance of the global solution is a rapidly decaying (Green’s)
function of the distance to these points.

A detailed analysis of the local discretization error when using this extrapolation scheme
shows that the resulting discretization is not consistent anymore. Therefore, it needs to be
checked whether or not this approach lowers the order of accuracy of the resulting solution.
We investigate this by numerical experiments on a representative model problem. We solve a
Poisson equation perturbed with a mixed derivative term:

Í
Ã

Ã

Á

Ä

−Df+g
(2f

(x1 (x2

= (−2+g)ex1+x2,

f �(V=ex1+x2,

on V= (0, 1)× (0, 1). (27)

The right-hand-side and boundary conditions were chosen such that the solution f(x1, x2)=
ex1+x2 contains all powers of x1 and x2 in a Taylor series expansion. A second-order
cell-centered discretization is used on a uniform Cartesian mesh. The domain is decomposed
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into a rectangular array of 2×2 blocks. We compare the solution f1
h, which is obtained by

single-block solution (without extrapolation at internal corners), and the solution f2
h, which is

obtained by the multi-block solution with the extrapolation procedure at the internal corners
described above. The claim that we want to verify is that f2

h is just as accurate as f1
h or that

dh=f2
h−f1

h=O(h2). For this purpose we use the Euclidian norm �E, which describes the
average perturbation, defined as

yE=
'1

n
%

i=1, . . . , n

y i
2 (28)

and the maximum norm ��,

y�= max
i=1, . . . , n

�yi � (29)

for y�Rn.
Table I shows some results for dh for different values of the parameter g. It is clear from

this table that the ratio d2h/dh:4 for both norms. Therefore, the order of the perturba-
tion dh caused by extrapolation at internal corners is the same as the order of accuracy of the
numerical solution. Hence, the extrapolation procedure at the internal corners is allowed.

4. KRYLOV SUBSPACE ACCELERATION

The domain decomposition procedure as described in Section 3 converges slowly and is
particularly sensitive to variations in the number of blocks, subdomain sizes, and types of
external boundary conditions. Nevertheless, as we will show, it is a good preconditioner and

Table I. Perturbation of the solution caused by extrapolation at internal
corners

g=0.50g=0.25h

d2hE/dhEdhE d2hE/dhE dhE

3.25 · 10−41.42 · 10−40.1
6.181.96 · 10−5 7.230.05 5.25 · 10−5

0.025 5.013.19 · 10−6 1.05 · 10−56.16
4.272.45 · 10−64.257.36 · 10−70.0125

d2h�/dh�dh� d2h�/dh� dh�
0.1 7.67 · 10−3 1.85 · 10−3

2.00 · 10−40.05 3.714.98 · 10−43.83
3.721.34 · 10−40.025 3.855.20 · 10−5

3.720.0125 3.60 · 10−53.711.40 · 10−5

dh=f2
h−f1

h measures the effect of extrapolation on the numerical solution.
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we will use it as such in combination with a GMRES [34] Krylov subspace method. Such a
GMRES acceleration procedure gives much more robustness with respect to these parameters,
see [16,17].

Krylov subspace methods are frequently used to accelerate domain decomposition methods
but mostly in conjunction with an approximate solution of the subdomains, see, for example,
[45] and many of the papers on iterative substructuring methods in [46–50]. We use an
accurate solution of the subdomains, which means that the Krylov subspace acceleration uses
in effect a block Gauss–Seidel/Jacobi preconditioning of the global system of equations.4 The
block Gauss–Seidel/Jacobi preconditioned global system of equations has the following block
form:

B6=
�I

0
R
D
n �6nr

6 r

n
=
�gnr

g r

n
, (30)

where the components of 6r correspond to unknowns in the regions Ir and IIIr in Figure 5, and
those of 6nr correspond to the remaining unknowns. This block form can be derived as follows.
The block Jacobi or Gauss–Seidel iteration is written as in (16) with N=Ngs or N=Njac. As
can be seen from Figure 5 and the discretization stencils in Figure 3, um+1 depends only on
the components of um corresponding to regions Ir and IIIr in Figure 5. We write

u=
�w
6

n
, (31)

with w the components of u in regions Inr, IIInr and II and 6 the components of u in regions
Ir and IIIr. The injection operators Qw and Q6 are defined as

Qw
Tu=w, Q 6Tu=6, (32)

so that the fact that um+1 depends only on 6 can be expressed as

(I−N−1A)u= (I−N−1A)Q66. (33)

Furthermore, since u=Qww+Q66, it follows from (33) that

N−1AQww=Qww, (34)

and therefore,

N−1Au=N−1AQww+N−1AQ66=Qww+N−1AQ66=N−1f. (35)

4 As mentioned before in Section 3, a GMRES method with appropriate preconditioners [45,44] is used to solve the
subdomain problems (inner iteration), but this is independent of the GMRES method used for the outer iteration,
which is explained in this section.
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By multiplying the left- and right-hand-sides of (35) with [Qw Q6 ]T we get�Qw
T

Q 6T
n

N−1Au=
� I
¥

Qw
TN−1AQ6

Q 6TN−1AQ6

n�w
6

n
=
�Qw

T

Q 6T
n

N−1f, (36)

which proves the block form (30) with R=Qw
TN−1AQ6 and D=Q 6TN−1AQ6.

From the block form (30) we see that we can solve for the interface (or relevant) variables
6r independently of the other variables. This means that we can reduce the vector length in
GMRES to the length of 6r, which only contains unknowns along the interface. It is precisely
this fact that makes GMRES acceleration efficient. For a detailed description, see [16,17].
Table II shows the number of domain decomposition iterations and total time needed to solve
a Poisson equation on a rectangle divided into 3×3 blocks. Clearly, the accelerated algorithm
provides a significant speedup, and due to the reduction in vector length by using only 6r, the
amount of additional work by the GMRES acceleration is negligible, see [16,17] for details.

5. NUMERICAL RESULTS

This section presents results for several flow problems in complex geometries. In all computa-
tions we have used a relative stopping criterion for solving the subdomain problems (with
GMRES) and the domain decomposition acceleration (with GMRES):

rm5er0, (37)

with e the required relative accuracy and rk the residual vector after k steps of the GMRES
algorithm. As mentioned earlier, the subdomains should be solved accurately, otherwise the
reduction of vector length in GMRES to the number of interface variables 6r would not have
been possible. In the reported experiments we have used the same relative accuracy of e=10−4

for solving subdomains as for the GMRES acceleration. This accuracy for the subdomains
proved to be sufficient.

The stopping criterion used for the stationary solution is as follows. If um denotes a
computed quantity (velocity field or pressure) at a certain time step, then a relative accuracy
of e has been reached for this quantity when the following holds:

Table II. Additional work in the accelerated algorithm

50×50Subdomain grid 40×405×5 30×3010×10 20×20

220Unaccelerated No. iterations 135 110 119 149 183
7062Time 32 51 231 919 2727

32.114.06.21.90.50.2Time/iteration

Accelerated 17 18No. iterations 16 15 15 16
5Time 598258119379

Time/iteration 33.215.27.42.40.60.3

Computing time on a HP 9000/720 workstation measured in seconds.
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um+1−um�=
1−r

r
eum+1E, (38)

where �� denotes the maximum norm and �E denotes the Euclidean norm as before. The
quantity r is defined by

r=
um+1−umE

um−um−1E

. (39)

The computation stops when (38) is satisfied for both the momentum and pressure equations.
For a derivation of this stopping criterion see [17] pp. 132–133.

Three different problems will be computed. The backward-facing step problem is discussed
in Section 5.1. This problem is used to compare multi-block efficiency and accuracy with that
of single-block solution. Section 5.2 shows that our multi-block method also functions well in
the presence of skewed grids. Furthermore, it is a good test to verify the extrapolation
procedure introduced in Section 3.2. We end with the problem of a cylinder in a wall-bounded
shear flow in Section 5.3. This problem is only used to demonstrate the capability of our
multi-block method to handle more complex geometries.

To obtain accurate results for these problems we use a central discretization, even at the
higher Reynolds numbers. Numerical techniques that use artificial diffusion (e.g. upwinding)
are less suited for these problems. Especially at higher Reynolds numbers, the artificial
diffusion can become more significant with respect to the physical diffusion, which in turn can
lead to inaccurate results (e.g. inaccurate reattachment lengths).

5.1. Flow o6er a backward-facing step

The backward-facing step problem is a long-standing benchmark to examine the accuracy of
numerical methods. It models the phenomenon of flow separation of internal flows caused by
a sudden expansion of the test-section geometry. Numerical results have been presented in
[5,51,52]. A good paper containing experimental results is [53].

Figure 8 shows the backward-facing step geometry and boundary conditions. The flow
geometry is taken as identical to that of [5] with expansion ration h :H=1:2. The length of the

Figure 8. The backward facing step geometry and decomposition.
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computational domain is L=30h, and the length of the entrance section is l=6h. A uniform
grid of 130×66 is used for the part of the geometry excluding the entrance. The grid is
extended uniformly to the entrance. On inflow, a parabolic inlet velocity profile is prescribed,
and on outflow the tangential velocity and normal stress are zero. On the remaining
boundaries, no-slip conditions are prescribed.

The following decompositions are used. The single-block problem is obtained by fitting
regions 2 and 3 in Figure 8 with a single uniform grid. The multi-block problem without inlet
consists of the two blocks defined by regions 2 and 3. The multi-block problem with inlet
section modeled consists of all three blocks.

The Reynolds number is defined as in [53]:

Re=
26̄h
n

, (40)

with 6̄ the average inlet velocity and n=m/r the kinematic viscosity. Computations are carried
out for Re=200, 400, 600 and 800.

For all these Reynolds numbers, recirculation occurs directly after the inlet. The reattach-
ment length, normalized by the step height x %r=xr/h (see Figure 8) is the main result of the
computation. It has been observed that at Reynolds numbers larger than 400 a secondary
separation bubble appears at the top of the domain. We will also compute the normalized
length of the secondary separation bubble x %s=xs/h. The locations were the flow separates or
reattaches to the wall are obtained by looking at those positions on the boundary where the
tangential stress m (61/(x2 changes sign. This produces a result within an accuracy of the grid
size O(Dx), so that for a reasonable grid this error should be small. The central discretization
scheme we use is essential to obtain good results since it contains no artificial numerical
smoothing. Especially at the higher Reynolds numbers this is important. Figure 9 shows the
result of a multi-block computation at Re=600 and clearly shows the two recirculation areas.

Computations will be done with and without the inlet channel modeled. Without the inlet
channel present, we perform single- and multi-block computations to compare accuracy and
efficiency. Multi-block solution with the inlet present is used to check the influence of more
accurate geometrical modeling on the results.

As explained in the Section 1, we use a Euler time stepping scheme to compute the
stationary solution. Even though this scheme is implicit, it is still not possible to take
arbitrarily large time steps. This is because of the iterative solution methods used for the
momentum equations. Therefore, we gradually increase the Reynolds number during computa-
tion as

Figure 9. Streamlines of multi-block backward-facing step at Re=600. Two recirculation areas are
visible.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 141–173



SCHWARZ DOMAIN DECOMPOSITION 159

Re(t)=max{Refinal, 2·t}. (41)

In combination with a time step of 0.25, this proved to be sufficient to reach steady state. A
relative stationary accuracy of 10−3 in (38) proved to be sufficient to reach steady state with
sufficient accuracy.5

Table III shows the single- and multi-block results for the problem without inlet, and the
numerical results of [5,51,52] (also obtained without inlet channel) and the experimental results
of [53]. Our results are in good agreement. Furthermore, the single- and multi-block results
also agree well. There are small differences between the single- and multi-block solutions that
are probably caused by the grid stretching at the block interface. For Reynolds numbers larger
than 400, the experimental results of [53] deviate somewhat from the numerical results. As
noted in [53], the reason for this is probably that the actual (experimental) flow is no longer
two-dimensional at these Reynolds numbers.

Table IV shows results for the secondary separation bubble. Again, good agreement is
obtained between our results and those found in the literature. For both the secondary
separation bubble and the reattachment length, small differences in the results occur between
single- and multi-block solution. The reason can be that for determining the recirculation
length one has to look for sign changes of the tangential stress along the boundary. With this
procedure, even small numerical errors can cause a relatively large change in the measured
reattachment lengths and secondary separation bubbles. Direct comparison of the single- and
multi-block results showed that the multi-block velocity fields were always within less than 7%
of the single-block solution.6

Table III. Reattachment lengths for the backward-facing step problem without the inlet

Single Multi Figure 11, [5] Figure 9, [52] Figure 14, [53]Re [51], p. 118

200 5.2 5.2 5.3 5.1 5.3 Not computed
8.5 8.4 8.3 8.5 8.7400 8.7

600 10.6 10.710.3 11.910.610.2
11.914.311.811.711.812.0800

Single- and multi-block results, and results by others are listed.

Table IV. Length of the secondary separation bubble without inlet

Re Single Multi Figure 11, [5] Figure 9, [52] Figure 14, [53]

2.11.6 Not present400 Not given2.5
7.87.87.57.1600 7.4

11.5 5.510.8 11.4800 11.0

5 We carried out several experiments by varying the stationary accuracy from 10−2 to 10−6 to verify this.
6 The maximum difference occurred of course in those regions where the solution was very small in magnitude, where
even small absolute differences produce large relative differences.
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Table V. Reattachment lengths and secondary separation bubbles with and
without inlet

Single Multi withoutRe Multi with
inletinlet

Reattachment lengths
200 5.2 5.2 4.9

8.5400 8.4 7.9
10.6 10.3600 9.8

800 12.0 11.8 11.1

Secondary separation bubbles
1.6 2.1400 3.4

600 7.1 7.5 7.9
10.8 11.0800 11.6

To show the effect of more accurate geometric modeling on the results, Table V compares
the results of multi-block solution with inlet with the results without inlet. Note that the
reattachment lengths predicted with inlet taken into account are somewhat smaller than those
computed without inlet. This was, as remarked in [5], first noted in [54]. The discrepancies
between the present result and [54] can be attributed to the upstream influence of the inlet
section. This causes the velocity profile at the expansion to deviate from a parabola, so that
effectively the problem without inlet section modeled uses a slightly different inlet velocity
field.

Finally, we compare the efficiency of the multi-block with the single-block solution. Table
VI compares computational efficiency of the single-block with that of the multi-block solution.
As can be seen, the multi-block solution requires two to three times as much computing time
as the single-block solution.

There are several reasons for this. One reason is that the subdomain problems are solved
accurately in each domain decomposition iteration. This was required for the reduction of the
total system of equations to a system restricted to the unknowns at or near the block
interfaces, see Section 4. Alternatively, one could omit the reduction of the system size to the
interface equations and permit inaccurate solution of subdomains. This is the subject of our
paper [55] (also discussed in [17] Chapters 6 and 7).

Table VI. Comparison of efficiency of single- and multi-block solution for
Reynolds 600

MomentumTime Pressure
(%) (%)(min)

24 22Single-block 199.2
504.5 34 56Multi-block (no inlet)
539.6Multi-block (inlet) 34 57

The total computing time is shown, together with the percentages of computing time
solving the momentum and pressure equations respectively.
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Another reason is that in our implementation, the subdomain Krylov solver is used as black
box, which means that for each repeated solution of the same subdomain, the subdomain
Krylov space must be rebuilt from the start. Significant optimizations can probably be made
by saving the subdomain Krylov spaces between consecutive domain decomposition iterations.

5.2. Skewed ca6ity

In [15,56], the skewed cavity problem was defined for testing discretizations on non-orthogonal
grids. The problem geometry is depicted in Figure 10. It is a parallelogram with boundary
length L=1. The angle b can be varied. We examine only test case 1 from [56] and take
b=45°. The top wall is moving with velocity 61=1 to the right. On all other boundaries
no-slip conditions are prescribed. The Reynolds number is defined as

Re=
61L

n
. (42)

The skewed cavity problem is used here to validate the extrapolation procedure at corners
discussed in Section 3.2. For this purpose we will compare the single- and multi-block
solutions at the centerlines CL1 and CL2. The multi-block problem uses four blocks with the
interfaces CL1 and CL2. The problem is also used to compare efficiency of single- with
multi-block solution again.

The solution to the skewed cavity problem is computed at Reynolds numbers 100 and 1000,
with global grids of respectively 64×64 and 128×128 grids. A stationary accuracy of 10−2

is used, which proved to be sufficient.7 All problems are computed with time step Dt=0.15. As
opposed to the backward-facing step problem, we do not increase the Reynolds number during
computation but start immediately at Re=1000.

To compare results with [15,56], we compute the minimum and maximum values of the
streamfunction C and the respective locations. As a measure of the accuracy of the solution on
the finest grid, we compute the quantity

Figure 10. Geometry of the skewed cavity problem.

7 We also carried out tests at larger stationary accuracies to verify this.
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d=
)C128−C64

C128

)
·100. (43)

The quantity d indicates the relative error percentage between solutions obtained on the finest
grid of 128×128 cells and that of 64×64 cells.

Figure 11 shows the streamlines obtained on the 128×128 grid, which agree closely with
those in [15,56]. The values of the streamlines are identical to those in [15,56].

A more detailed comparison is made by comparing the minimum and maximum values of
the streamfunctions. These results are shown in Table VII. As can be seen from Table VII the
single- and multi-block results agree closely. Furthermore, we have good agreement with the
results of [15,56]. The accuracy measure d is somewhat larger for our solution than for the
solutions of [15,56]. This difference is probably caused by the fact that much finer grids were
employed in these references: 320×320 and 256×256 grids respectively in [15,56].

To investigate the effect of the extrapolation procedure at corners introduced in Section 3.2,
we plot the Cartesian velocity component 61 at CL1, and 62 at CL2 for multi-block and
single-block solution, see Figure 12. As can be seen from this figure, single- and multi-block
solutions agree excellently at the centerline. This verifies again that the extrapolation procedure
can be applied safely.

Finally, we compare the efficiencies of multi-block and single-block solution again. Table
VIII compares computing times for the single- and multi-block problems using 128×128 grid
cells. The multi-block solution costs approximately four times as much time as single-block
solution. Also, we see that, similar to the backward facing step problem, the pressure equations
requires the most time with multi-block solution. Possible reasons for this are as explained in
the previous section.

5.3. Flow around a cylinder in a wall-bounded shear flow

We compute the flow around a cylinder in a wall-bounded shear flow. The cylinder is situated
in the viscous sublayer of a turbulent boundary layer, so the flow is laminar and the inlet
velocity profile is linear.

Table VII. Minima and maxima of the streamfunction for the skewed cavity problem
with Re=1000 on different grids

Single-block Multi-block Reference [56] Reference [15]

−5.3523 · 10−2−5.3507 · 10−2−5.3617 · 10−2−5.3591 · 10−2Cmin

1.3089 1.3089 1.3130x1 1.3128
0.5745 0.5745 0.5740x2 0.5745

0.120.1d 0.010.02

Cmax 9.9486 · 10−3 9.9887 · 10−3 1.0039 · 10−2 1.0039 · 10−2

x1 0.8173 0.8251 0.7766 0.7775
0.40050.39850.40330.4033x2

d 1.3 0.8 0.33 0.15
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Figure 11. Streamlines for the skewed cavity problem at Re=1000.
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Figure 12. Cartesian velocity components for the single- and multi-block solution on the centerlines vs.
arc-length s along the centerline: (a) u1 on CL1, (b) u2 on CL2.

This problem models the removal of particles from a surface. Examples of where this
phenomenon occurs are the cleaning of surfaces by water jets, vacuum cleaners, and contam-
ination of surfaces (for instance, in the disposal route of irradiated fuel of nuclear reactors).
Therefore, this problem is of considerable practical interest.

From a numerical point of view, it is also interesting because both single-block and
multi-block solutions can be computed and the grid is non-orthogonal. The emphasis lies in
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Table VIII. Comparison of efficiency of single- and multi-block solution for
the skewed cavity problem

Time Momentum Pressure
(min) (%) (%)

73.8 26 56Single-block
290.2 18Multi-block 79

The total computing time is shown, together with the percentages of computing time
solving the momentum and pressure equations respectively.

comparing single- with multi-block solutions and verification of the multi-block algorithm
(especially the extrapolation procedure described above). Figure 13 depicts the flow geometry.
The cylinder has diameter a. The Reynolds number is defined as

Re=
a6*
n

, (44)

with

6*=
't0

r
, (45)

where t0=m (61/(x2 is the shear stress associated with the linear inlet velocity profile. Typical
Reynolds numbers for this problem are Re=1–5. Our results are given for Re=2. In the
computation we have used L1=L2=H=10. The boundary conditions are given in Figure 13.

Figure 13. Geometry and boundary conditions of the cylinder problem.
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Figure 14. Two different decompositions of the domain.

Two different grids were used as shown in Figure 14: a single- and a multi-block grid. The
two dashed lines in the second decomposition indicate additional block interfaces that were
introduced during grid generation to obtain more grid control. So the grid of decomposition
two was generated by using four blocks and after that joining the two blocks on the left and
the two blocks on the right to a single block. This also means that the grid may be non-smooth
across these dashed lines, because the grid is generated in the subdomains independently.
Figure 15 shows the corresponding single- and multi-block grids that were used at grid
refinement factor 1/2 (one-fourth of the number of grid cells at refinement factor 1).

The advantage of grid 1 is that it is a single-block grid that is well-adjusted to the cylinder.
The disadvantage is that it is badly adjusted to the other external boundaries (there is a 90°
kink in the grid lines at the top-left and top-right corners). The advantage of grid 2 is that it
is well-adjusted to the external boundaries and is nearly Cartesian in large parts of the domain.
The disadvantage is that there is a singularity in the grid at point A.

The stationary solution is computed using the implicit Euler time integration scheme with
start time t=0 and end time t=10, with an appropriate time step. These time steps are given
in Table IX. Figure 16 shows the computed velocity profile for the two grids at grid refinement
factor 3. With grid 1 (single-block) we see that the velocity field is inaccurate at the top-right
corner. This is probably due to the 90° kink in the grid lines at the top-right corner. The
multi-block solutions do not have this problem because they are well-adjusted to the external
boundaries.

Figure 15. Single-block grid (a) and the multi-block grid (b) of two blocks.
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Table IX. Results for the cylinder problem

Grid refinement Min. c Max. c No. grid cells Dt

Grid 1
−0.72088 at (8.69, 1.81) 50.000 300 0.10.5
−0.03286 at (1.95, 0.87) 50.0001 1200 0.1
−0.03159 at (1.97, 0.84) 50.000 4800 0.052
−0.03144 at (2.02, 0.86) 50.000 10 800 0.053

Grid 2
−0.03288 at (1.78, 0.84) 50.000 360 0.10.5
−0.03062 at (2.24, 0.79) 50.0001 1380 0.1

2 −0.02949 at (2.02, 0.86) 50.000 5400 0.05
3 −0.02932 at (1.98, 0.82) 50.000 12 240 0.02

Minimum and maximum streamfunction at different grid refinement factors.

A comparison of the maxima and minima of the streamfunction in Table IX shows that
grids 1 and 2 agree reasonably well. The streamlines are depicted in Figure 17.

The isobars are shown in Figure 18. These plots show that the single-block solution of grid
1 is inaccurate near the top-left and top-right corners. This is probably due to the strong
non-orthogonality at these corners combined with a change in type of boundary condition.
This inaccuracy does not seem to propagate into the domain. The multi-block grid 2 does not
have these problems at the corners because it is well-adapted to the external boundaries of the
grid. However, there is an inaccuracy emanating from the top of the cylinder, following the
grid discontinuity to the left and right.

To verify that the problem with the pressure on grid 2 is not caused by the extrapolation
procedure that is performed at the top of the cylinder with the multi-block solution, we
compute the flow only in block 1 using sx 1x 2

=0 and 62=0 on the former block interface.
Figure 19 shows that there still is an inaccuracy of the pressure that follows the grid line
emanating from the top. This confirms that the pressure inaccuracies observed with the
multi-block solutions are not due to the extrapolation procedure but to non-smoothness of the
grid.

The conclusion from the computation on these two grids is that to improve accuracy of the
multi-block solution either grid generation or discretization should be improved. In the grid
generation phase, the grids should not be generated separately in the subdomains because this
gives non-smooth grids across block interfaces. Instead, the grid generation procedure should
be extended to the entire domain, for instance, using domain decomposition. A general
introduction to grid generation is [57], a more specialized work on multi-block grid generation
is [58]. Another solution is to improve accuracy of the discretization by using a more advanced
discretization scheme, see [9,10].

6. DISCUSSION/CONCLUSIONS

We have described a domain decomposition method for solving the incompressible Navier–
Stokes equations. The discretization is based on a staggered grid. The pressure-correction
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Figure 16. Velocity field: (a) grid 1, (b) grid 2.

scheme is used in combination with the u method for time integration. The domain decompo-
sition method extends the pressure-correction scheme to the composite domain. The momen-
tum and pressure equations are solved separately but over the composite domain using a
Schwarz-type domain decomposition method with minimal overlap.

A Krylov subspace (GMRES) method is used to accelerate convergence of the basic Schwarz
domain decomposition method. This also makes the method more robust with respect to
numbers of subdomains, number of grid points, and boundary conditions. The basic assump-
tion that subdomain problems are solved accurately enables a reduction of the total system of
equations to be solved (composite domain) to a system involving only unknowns at or near the
block boundaries.
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Figure 17. Streamlines using the multi-block grid 2.

The method is applied to three test problems: the backward-facing step problem, skewed
cavity problem, and the problem of a cylinder in a wall-bounded shear flow. These problems
show that the multi-block methods produces accurate results, also at higher Reynolds
numbers, and for highly non-orthogonal grids. The results for the cylinder problem show that
multi-block solution makes it much easier to obtain grids that are well-adapted to the external
boundaries. As comparison with the single-block solution showed, this also improves accuracy
of the resulting solution.

A problem with the current multi-block method is that it requires two to four times as much
computing time as the single-block solution.8 Several factors can be responsible for this. The
first is the requirement of the current multi-block method that subdomain problems must be
solved accurately. Another reason is that the iterative Krylov subdomain solvers throw away
their Krylov spaces after the solution of the equations. Possibly, some improvements can be
made by storing the subdomain Krylov subspaces between consecutive domain decomposition
iterations, and re-using them.

The experiments show that, with multi-block, the solution of the pressure equation becomes
the most expensive part of our Navier–Stokes solver. The momentum equations are relatively
easy to solve, which is because of the 1/Dt term on the main diagonal of the momentum
matrix, which improves convergence of the momentum equations.

Different methods can be used to reduce the total computation time of the domain
decomposed Navier–Stokes solver with respect to the single-block solver. A first method is to
lower the accuracy with which the multi-block problem in each time step is solved. This
approach can only be used to compute the stationary solution. Preliminary experiments have

8 It should be noted that in general flow problems, geometrically complex regions cannot be solved anymore using a
single topologically rectangular block.
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Figure 18. Isobars: (a) grid 1, (b) grid 2.

shown that this can approximately halve total computing time. The most promising method
is to lower the accuracy with which subdomains are solved. This approach requires a
different GCR [59] based acceleration technique. This method is the subject of our other
paper [55].
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Figure 19. Flow across a half cylinder, single-block results.
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